| |||
lp¡d`¡S> | h^y kdpQpfp¡ | kdpQpf |
• L$p¡grdõV |
lhpdp_ L$v$pQ ÆA¡kA¡ghu_¡ _X$i¡
afu A¡L$ hpf `funZ dpV¡$ s¥epf ÆA¡kA¡ghu fp¡L¡$V$_y„ DÍ$e_ 18 L¡$ 19 A¡râg¡ L$v$pQ _ \pe A¡hu i¼esp R>¡ A¡d Bkfp¡_p„ hs®ymp¡A¡ S>Zpìey„ lsy„. lhpdp_dp„ AQp_L$ a¡fapf_¡ L$pfZ¡ Aphp¡ r_Z®e g¡hphp_u i¼esp R>¡. AÐepf¡ 18 A¡râg¡ 3.43 hpÁe¡ DÍ$e__p¡ kde r_^p®qfs L$fhpdp„ Apìep¡ R>¡, `Z lhpdp__p L$pfZ¡ L$v$pQ s¡dp„ a¡fapf L$fhp¡ `X$i¡ A¡d Bkfp¡_p A¡L$ Ar^L$pfuA¡ `uV$uApB_¡ S>Zpìey„ lsy„. s¡d_p S>Zpìep A_ykpf Bkfp¡ Üpfp 18\u 25 A¡râg_p kdeNpmp_¡ DÍ$e_ dpV¡$ A_yL|$m NZhpdp„ Apìep¡ R>¡ A_¡ s¡dp„ \p¡X$p L$gpL$p¡_p¡ Dd¡fp¡ `Z \C iL¡$ R>¡. Å¡ lhpdp_dp„ L$p¡C dp¡V$p a¡fapfp¡ _l] \pe sp¡ Ap S> kdeNpmpdp„ DÍ$e_ L$fhpdp„ Aphi¡. s¡ dpV¡$ k|e®_u [õ\rs_p¡ ¿epg fpMu_¡ kde _½$u L$fpi¡. `funZ DÍ$e_ v$frdep_ A¡L$ D`N°l Æk¡V$-1 `Z R>p¡X$hp_p¡ R>¡. s¡_u kp¡gpf `¡_g_¡ EÅ® dmu iL¡$ s¡ dpV¡$ k|e®_u [õ\rs A_yL|$m lp¡hu Å¡CA¡ A¡d Ar^L$pfuA¡ S>Zpìey„ lsy„. fp¡L¡$V$ kamsp`|h®L$ AhL$pidp„ `lp¢Q¡ `R>u D`N°l_¡ lhpdp„ sfsp¡ d|L$u v¡$hpe R>¡. s¡ `R>u D`N°l_u kp¡gpf `¡_g M|gu Åe R>¡ A_¡ k|e®_p„ qL$fZp¡dp„\u huS>mu `¡v$p L$fu_¡ EÅ® d¡mhhp_„y iê$ L$fu v¡$ R>¡. s¡ dpV¡$ k|e®_p„ âMf qL$fZp¡ ku^p„ `X$sp„ lp¡e sp¡ `|fsu EÅ® sfs S> âpàs \C iL¡$. fp¡L¡$V$ kamsp`|h®L$ DÍ$e_ cf¡ sp¡ 20 S> rdr_V$dp„ [õ\f c°dZL$np ky^u `lp¢Qu Åe R>¡ A_¡ D`N°l_¡ s¡_p õ\p_ R>p¡X$u v¡$ R>¡. buÆ bpSy> lhpdp_ MpspA¡ S>Zpìey„ lsy„ L¡$ v$rnZ cpfs_u Apk`pk_p rhõspfp¡dp„ hphpTp¡Xy„$ Aph¡ s¡hu [õ\rs `¡v$p \C flu R>¡. s¡_p L$pfZ¡ S> îulqfL$p¡V$pdp„ `Z hpv$mp„ A_¡ hfkpv$u hpsphfZ Åd¡ sp¡ DÍ$e_ fv$ L$fhy„ `X¡$. b¢Ngp¡f lhpdp_ Mpsp_p rX$f¡¼V$f X$p¡. A¡. A¡g. L$p¡`f¡ S>Zpìey„ lsy„ L¡$ lhpdp_ Mfpb \pe s¡hp„ rQl¹_p¡ R>¡ A_¡ \p¡X$p qv$hk ky^u hphpTp¡X$p âL$pf_u [õ\rs b_u fl¡ s¡hu i¼esp R>¡. Ns 28 dpQ£ R>¡ëgu OX$uA¡ ÆA¡kA¡ghu_y„ DÍ$e_ fv$ L$fu v¡$hy„ `X$éy„ lsy„. `uV$uApB ANpD_p Al¡hpgp¡
|
|