

AIEEE Sample Paper-2 (Answer Key)					
1. (A)	2. (D)	3. (C)	4. (A)	5. (C)	
6. (B)	7. (B)	8. (B)	9. (B)	10. (A)	
11. (B)	12. (B)	13. (D)	14. (B)	15. (D)	
16. (B)	17. (A)	18. (B)			

Solution					
	<u>PHYSICS</u>	4.			
1.	i and V will be in same phase $\therefore \cos 0^{\circ} = 1$ $V = \sqrt{V_{R}^{2} + (V_{L} \sim V_{C})^{2}} \text{ at resonance } V_{L} \sim V_{C} = 0$		$F \xrightarrow{E D C} C$		
2.	\therefore V = 40 Volt F = $\sqrt{(Mg + mg)^2 + T^2}$, T = Mg		$R_{AB} = \frac{25 \times 5}{30} = \frac{125}{30} = \frac{12.5}{3} = 4.2\Omega$		
	T mg Mg	5.	$R_{FC} = \frac{15 \times 15}{30} = \frac{225}{30} = \frac{22.5}{3} = 7.5 \Omega$ Consider the motion along the common normal: $-e = \frac{v \cos\theta}{-u \sin\theta}, \Rightarrow v \cos\theta = e u \sin\theta \qquad \dots (1)$		
3.	$E = -\frac{dv}{dr}$ $dv = -Edr$		Similarly for the motion along the common tangent $u \cos\theta = v \sin\theta$ (2) $\therefore e \tan\theta = \cot\theta$, or $\tan^2\theta = \frac{1}{2}$		
	$\int_{v_a}^{v_b} dv = -\int_{r}^{2r} \frac{\lambda}{2\pi\varepsilon_0 r} dr = -\frac{\lambda \ln 2}{2\pi\varepsilon_0}$		$\theta = \tan^{-1} \sqrt{\frac{1}{e}}$		
	$W = q\Delta v = \frac{q\lambda \ln 2}{2\pi\varepsilon_0} = \frac{1}{2}mv^2$ $\sqrt{\lambda q \ln 2}$		$f_r = \mu mg$ $\therefore a = -\mu g; \alpha = -\frac{2\mu g}{r}$		
	$\Rightarrow v = \sqrt{\frac{\lambda q \ln 2}{\pi \varepsilon_0 m}}$ EE pattern ple Paper 2	1	$W = \frac{2r_0}{r} + \alpha t; v = v_0 - \mu gt$		

At t =
$$\frac{v_0}{\mu g}$$
; V = 0 and ω = 0;

It will stop.

 \therefore Correct answer is (B)

Mathematics

7. (B) Let
$$f(x) = 1 + 2x + 3x^2 + 4x^3 + ... + 100x^{99}$$
, $x \neq 1$
and $g(x) = x + x^2 + x^3 + x^4 + ... + x^{100}$, $x \neq 1$
Then $f(x) = g'(x)$
Now, $g(x) = \frac{x(x^{100} - 1)}{x - 1}$
 $\Rightarrow \qquad f(x) = g'(x) = \frac{100 x^{101} - 101 x^{100} + 1}{(x - 1)^2}$
The given series is $f(2) = 100.2^{101} - 101.2^{100} + 1 = 99.2^{100} + 1$
8. (B) Let $I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{(\tan nx)^n + 1} dx$ (1)
 $\therefore \qquad I = \int_{0}^{\frac{\pi}{2n}} \frac{1}{(\cot nx)^n + 1} dx$ (2)

(1) + (2)
$$\Rightarrow 2I = \int_{0}^{\frac{\pi}{2n}} 1. \ dx = \frac{\pi}{2n}$$

$$\Rightarrow$$
 I = $\frac{\pi}{4n}$

9. (B) Rewrite f(x) to get

$$f(x) = \begin{cases} x^2 - x - 6 , x \ge -1 \\ 3x - x^2 , x < -1 \end{cases}$$

The critical points of f are $x = \frac{3}{2}$ and x = -1

Graph y = f(x) to see the truth of the assertion. R is true but, obviously, not an explanation of A

10. (A)

$$\frac{1}{n^3 - n} = \frac{1}{(n-1)n(n+1)}$$
$$= \frac{1}{2} \left(\frac{1}{(n-1)n} - \frac{1}{n(n+1)} \right)$$

Take Σ on both sides and let *n* run from 2 through N

$$\therefore \qquad \sum_{n=2}^{N} \frac{1}{n^{3}-n} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N(N+1)} \right)$$

A is true and R is true. R is a correct explanation of A.

11. (B) $\alpha_1, \alpha_2, \dots, \alpha_9$ are the roots of the equation $z^9 + z^8 + \dots + z + 1 = 0$

Take the transformation $z \rightarrow \frac{t-1}{2}$.

The equation changes to

$$\left(\frac{t-1}{2}\right)^9 + \left(\frac{t-1}{2}\right)^8 + \dots + \left(\frac{t-1}{2}\right) + 1 = 0$$

$$(t-1)^9 + 2(t-1)^8 + \dots + 2^8 (t-1) + 2^9 = 0$$

The roots of this equation are $2\alpha_1 + 1$, $2\alpha_2 + 1$, ..., $2\alpha_9 + 1$
Hence $-(2\alpha_1 + 1)(2\alpha_2 + 1) \dots (2\alpha_9 + 1)$
 $= \frac{2^9 - 2^8 + \dots + 2 - 1}{1 - 1} = 341$

12. (B) From the equation of the tangent, one obtains $A = (a \sec \theta, 0)$ and $B = (0, b \csc \theta)$.

1

P bisects AB
$$\Rightarrow a \cos \theta = \frac{a \sec \theta}{2}$$
 and $b \sin \theta$

$$\frac{b \operatorname{cosec} \theta}{2}$$

 \Rightarrow

 \Rightarrow

Hence
$$\cos^2 \theta = \frac{1}{2} (\& \sin^2 \theta = \frac{1}{2})$$

CHEMISTRY

13. (D) Cu^{2+} and SO_4^{2-} have coulombic forces of attraction giving rise to ionic bond. Four H_2O molecules form coordinate bonds with Cu^{2+} . One H_2O molecule joins to H_2O related to Cu^{2+} and also SO_4^{-2-} by H-bonds. H_2O itself has covalent bonds.

15. (D)
$$N_2 + 3H_2 \xrightarrow{K_1} 2NH_3$$

$$\Rightarrow 2NH_3 \xrightarrow{K'} N_2 + 3H_2; K' = \frac{1}{K_1} \dots (i)$$
 $N_2 + O_2 \xrightarrow{K_2} 2NO; K_2 \dots (ii)$
 $H_2 + \frac{1}{2}O_2 \xrightarrow{K_3} H_2O \dots (iii)$

AIEEE pattern Sample Paper 2

$$\Rightarrow 3H_2 + \frac{3}{2}O_2 \xrightarrow{K''} 3H_2O; K'' = K_3^3 \quad ... (iv)$$

Adding (i), (ii) and (iv)

$$2NH_3 + \frac{5}{2}O_2 \xrightarrow{K'} 2NO + 3H_2O ; K' = \frac{1}{K_1}K_2 K_3^3$$
$$= \frac{K_2 K_3^3}{K_1}$$

16. (B)

$$H > C = O, OCH - CH_2 - C = O and$$

 $H > C = C < CH_3$
 CH_3
 CH_3

can be obtained by the ozonolysis of

$$H_2C = CH - CH_2 - C = C - CH_3$$

 $CH_3 CH_3$
17. (A)
 $ClCH_2 - CH - CH_2 - CH_3$
 CH_3
 $(d \text{ and } l)$

$$CH_{3} \begin{array}{c} Cl \\ l \\ CH_{3} \\ - CH_{2} \\ - CH_{3} \\ CH_{3} \end{array} CH_{2} \\ - CH_{3} \\ CH_{3} \\ - CH_{3$$

$$CH_{3} - CH - CH - CH_{3}$$

$$| CH_{3} - CH_{3}$$

$$| CH_{3}$$

$$(d \text{ and } l)$$

$$CH_{3} - CH - CH_{2} - CH_{2} - CH_{2} - CI$$

$$|CH_{3}$$

18. (B) In fcc,
$$2(r^+ + r^-) = \sqrt{2} a$$

 $2(110 + r^-) = 508 \times 1.414$
 $r^- = 359 - 110 = 249 \ pm$

AIEEE pattern Sample Paper 2