

AIEEE Test Paper (Answer Key)

1.(C)

2. (B)

3. (A)

4. (C)

5. (C)

6. (A)

7. (A)

8. (A)

9. (B)

10. (D)

11.(C)

12. (A)

13. (B)

14. (B)

15. (B)

16. (C)

17. (A)

18. (D)

Solution

PHYSICS

1.
$$a = \frac{F_0}{m} \cos \left(\frac{\pi}{2} t \right)$$

$$\int_{0}^{0} dv = \frac{F_0}{m} \int_{0}^{t_0} \cos\left(\frac{\pi}{2}t\right) dt \implies 0 = \frac{F_0}{m(\pi/2)} \sin\left(\frac{\pi}{2}t_0\right)$$

$$\implies t_0 = 2 \sec$$

$$\frac{dx}{dt} = v = \frac{F_0}{m(\pi/2)} sin(\frac{\pi}{2}t)$$

$$\int_{0}^{x} dx = \frac{2F_0}{\pi m} \int_{0}^{2} \sin\left(\frac{\pi}{2}t\right) dt \implies x = \frac{8F_0}{m\pi^2}$$

4. If q charge flows to the ground

Then
$$V = \frac{k(Q-q)}{a} - \frac{kQ}{b} = 0$$

$$\Rightarrow \frac{Q}{a} - \frac{q}{a} - \frac{Q}{b} = 0$$

$$Q - \frac{a}{b}Q = q$$

$$\therefore$$
 $q = Q \left[1 - \frac{a}{b} \right]$

5. Combination of two prisms and one glass plate

Mathematics

7. (A) Let z be a complex number stisfying $z^5 = (z-1)^5$

$$\Rightarrow$$
 $|z^5| = |(z-1)^5| \Rightarrow |z|^5 = |z-1|^5$

 \Rightarrow |z|=|z-1|1.

Thus, z lies on the perpendicular bisector of the segment joining the origin and A(1+i0) i.e. z lies on Re (z) = 1/2.

8. (A) Applying $R_3 \rightarrow R_3 - \cos \varphi R_1 + \sin \varphi R_2$,

we get
$$\Delta = \begin{vmatrix} \cos \theta & -\sin \theta & 1\\ \sin \theta & \cos \theta & 1\\ 0 & 0 & \sin \varphi - \cos \varphi \end{vmatrix}$$

 $= (\sin \varphi - \cos \varphi)(\cos^2 \theta + \sin^2 \theta)$

$$=\sqrt{2}\left\{\frac{1}{\sqrt{2}}\sin\varphi-\frac{1}{\sqrt{2}}\cos\varphi\right\} = \sqrt{2}\sin(\varphi-\pi/4)$$

As $-1 \le \sin(\phi - \pi/4) \le 1$,

$$-\sqrt{2} \le \sqrt{2} \sin(\varphi - \pi/4) \le \sqrt{2}$$
 or $-\sqrt{2} \le \Delta \le \sqrt{2}$.

- 9. (B) Since f(4) = f(5) = f(6) = f(7) = 0, so by Rolle's theorem applied to the intervals [4,5],[5,6][6,7] there exist $x_1 \in (4,5), x_2 \in (5,6), x_3 \in (6,7)$ such that $f'(x_1) = f'(x_2) = f'(x_3) = 0$. Since f' is a polynomial of degree 3 so cannot have four roots.
- 10. (D) Since the given circle passes through the origin $p-3=0 \Rightarrow p=3$ and the equation of the given circle is $x^2+y^2+9x-3y=0$

Equation of the tangent at the origin to this circle is 9x-3y=0 (i)

Let the equation of the required circle which also passes through the origin be

$$x^2 + y^2 + 2gx + 2fy = 0.$$

Equation of the tangent at the origin to this circle is

$$gx + fy = 0$$

If (i) and (ii) represent the same line, then

$$\frac{g}{9} = \frac{f}{-3} = k \text{ (say)}$$
 (iii)

We are given that $\sqrt{g^2 + f^2} = 2\sqrt{\left(\frac{9}{8}\right)^2 + \left(\frac{-3}{2}\right)^2} = \sqrt{81 + 9}$

From (iii) we get $|k| \sqrt{9^2 + 3^2} = \sqrt{90} \implies k = \pm 1$

For k = 1,

g = 9, f = -3 and the equation of the required circle is $x^2 + y^2 + 18x - 6y = 0$.

11. (C) :
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \begin{cases} \pi - 2\tan^{-1}x &, x > 1\\ 2\tan^{-1}x &, -1 \le x \le 1\\ -\pi - 2\tan^{-1}x &, x < -1 \end{cases}$$

and
$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \begin{cases} 2\tan^{-1}x, & x \ge 0\\ -2\tan^{-1}x, & x < 0 \end{cases}$$

For 0 < x < 1

$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

Let
$$u = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 and $v = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$

$$\therefore \frac{du}{dv} = 1 \qquad (\because u = v)$$

12. (A) The algebraic perpendicular distance from (2,1) to the line 3x - 2y + 1 = 0 is $\frac{3(2) - 2(1) + 1}{\sqrt{(3)^2 + (-2)^2}} = \frac{5}{\sqrt{13}} L_1$

(say) and the algebraic perpendicular distance from (-3, 5) to the line 3x-2y+1=0

is
$$\frac{3(-3)-2(5)+1}{\sqrt{(3)^2+(-2)^2}} = -\frac{18}{\sqrt{3}} = L_2$$
 (say)

Here,
$$\frac{L_1}{L_2} < 0$$

 \therefore Given, points lie on opposite side of the line 3x-2y+1=0

Chemistry

13. (B) $\Delta x = \Delta v = a$

$$\Delta x. m \Delta v \ge \frac{h}{4\pi}$$

$$a^2 m = \frac{h}{4\pi}$$
 or $a = \sqrt{\frac{h}{4\pi m}}$

$$\Delta x = \sqrt{\frac{h}{4\pi} \times \frac{1}{m}}$$

$$\Delta x = \sqrt{\frac{\hbar}{2m}}$$

[Here
$$\hbar = \frac{h}{2\pi}$$
]

- **14. (B)** For the same cation, larger the size of anion, larger is the polarisability and hence higher is the covalent character.
- **15. (B)**Because the equilibrium constant is increasing with increase in temperature, the forward reaction is endothermic.
- **16. (C)** Lower the gold number, higher is the protective power.
- **17. (A)** Let the ratio be a : b

The fraction of $X = \frac{a}{a+b}$ and the fraction of

$$Y = \frac{b}{a+b}$$

$$\left(\frac{a}{a+b}\right) \times 30 - \left(\frac{b}{a+b}\right) \times 30 = 10$$

$$30a - 30b = 10a + 10b$$

$$20a = 40b$$

$$\frac{a}{b} = 2$$

$$\Rightarrow$$
 a:b=2:1

18. (D)

$$\bigcup_{\text{COOCH}_3} \bigcup_{\text{H}_2\text{O/H}^+}$$

$$\bigcup_{-CO_2}^{O} \xrightarrow{COOH} \bigcup_{-CO_2}^{O}$$