### **SOLUTIONS SET - 1**

## **MATHEMATICS – CLASS X**

1.  $84 = 2^2 \times 3 \times 7$ 

 $\therefore$  Prime factors of 84 are 2, 3 and 7.

- 2. Sum of zeroes = -5 + 4 = -1Product of zeroes =  $-5 \times 4 = -20$   $\therefore$  Required polynomial =  $x^2 - (-1)x + (-20)$ =  $x^2 + x - 20$
- Given equation is 2x + 3y 13 = 0
  For x = 2, y = 3
  L.H.S becomes 2(2) + 3(3) 13
  = 4 + 9 = 13
  = 13 13 = 0
  = R.H.S

Hence, x = 2, y = 3 is a solution of the given equation.

Here, first term =  $\sqrt{2}$ Second term =  $\sqrt{8}$  $\therefore$  Common difference =  $\sqrt{8} - \sqrt{2} = \sqrt{2}$  $\therefore$  Next term =  $\sqrt{18} + \sqrt{2} = 4\sqrt{2}$ 

4.

5. 
$$\cos A = \frac{3}{5}$$
  
 $\therefore \quad \sin A = \frac{4}{5}$   
Now,  $\cot A = \frac{\cos A}{\sin A} = \frac{3}{4}$   
 $\therefore \quad 9 \cot^2 A - 1 = 9 \left(\frac{3}{4}\right)^2 - 1$   
 $= \frac{81 - 16}{16}$ 

$$=\frac{65}{16}$$

6. Probability of losing = 1 – probability of winning

$$= 1 - \frac{5}{11}$$
  
 $= \frac{6}{11}$ 

7.



By Pythagoras theorem

AC = 
$$\sqrt{AB^2 + BC^2} = 5 \text{ cm}$$
  
Now AP =  $\frac{1}{2}$  AC =  $\frac{5}{2}$  = 2.5 cm

8. Let BC touches the circle at point K Now, AP = AQ = 10 cmand BP = BK... (i) and CQ = CK ... (ii) AB = AP - BPAC = AQ - QCand BC = BK + KCPerimeter of  $\triangle ABC = AB + BC + AC$ = AP - BP + BK + KC + AQ - QC ... [using (i) and (ii)] = AP + AQ= 10 + 10 = 20 cm



# Top Careers & You<sup>®</sup>

9. Let  $r_1 = 3 \text{ cm}$ ,  $r_2 = 4 \text{ cm}$  and R be the radius of the required circle A.T.Q.  $\pi R^2 = \pi r_1^2 + \pi r_2^2$   $= \pi (r_1^2 + r_2^2)$   $\therefore R^2 = r_1^2 + r_2^2$   $= 4^2 + 3^2$  = 25 $\therefore R = 5 \text{ cm}$ 

10. Median = 20.5

11. For zeros the quadratic polynomial is equated to O.

i.e. 
$$2x^2 - 9 - 3x = 0$$
  
or  $2x^2 - 3x - 9 = 0$   
 $\Rightarrow 2x^2 - 6x + 3x - 9 = 0$   
 $\Rightarrow (2x + 3) (x - 3) = 0$   
Now, either  $2x + 3 = 0$  or  $x - 3 = 0$   
 $\Rightarrow 2x = -3 \Rightarrow x = 3$   
 $\Rightarrow x = -\frac{3}{2}$ 

So, zeros of the equation are  $-\frac{3}{2}$  and 3

Verification of relation

a = 2, b = -3, c = -9

Here in the equation by equating with general equation we get

(i) Now sum of zeros = 
$$-\frac{3}{2} + 3 = \frac{-3+6}{2} = \frac{3}{2}$$
 and  $-\frac{b}{a} = -\frac{(-3)}{2} = \frac{3}{2}$   
i.e. sum of zeros =  $-\frac{b}{a}$   
(ii) Product of zeros =  $x_1.x_2 = -\frac{3}{2} \times 3 = -\frac{9}{2}$   
Also  $\frac{c}{a} = -\frac{9}{2}$   
i.e. product of zeros =  $\frac{c}{a} = \frac{\text{coefficient constt}}{\text{coefficient of } x^2}$ 



So 
$$\sin \theta = \frac{3k}{5k}$$
 and  $\cos \theta = \frac{4k}{5k}$   
 $\frac{5\sin \theta - 3\cos \theta}{5\sin \theta + 3\cos \theta} = \frac{5 \times \frac{3}{5} - 3 \times \frac{4}{5}}{5 \times \frac{3}{5} + 3 \times \frac{4}{5}}$   
 $= \frac{15 - 12}{15 + 12} = \frac{3}{27} = \frac{1}{9}$ 

=

#### 0R

$$\left(\frac{\tan 20^{\circ}}{\csc 70^{\circ}}\right)^{2} + \left(\frac{\cot 20^{\circ}}{\sec 70^{\circ}}\right)^{2} + 2 \tan 15^{\circ} \cdot \tan 45^{\circ} \cdot \tan 75^{\circ}$$

$$\Rightarrow \quad \left(\frac{\sin 20^{\circ}}{\cos 20^{\circ}} \times \sin 70^{\circ}\right)^{2} + \left(\frac{\cos 20^{\circ}}{\sin 20^{\circ}} \times \cos 70^{\circ}\right)^{2} + 2 \tan 15^{\circ} \cdot 1 \times \tan (90^{\circ} - 15^{\circ})$$

$$= \left(\frac{\sin 20^{\circ}}{\cos 20^{\circ}} \times \cos 20^{\circ}\right)^{2} + \left(\frac{\cos 20^{\circ}}{\sin 20^{\circ}} \times \sin 20^{\circ}\right) + 2 \tan 15^{\circ} \cdot \cot 15^{\circ}$$

$$\left\{\begin{array}{l} \text{u sin g formula} \\ \sin (90^{\circ} - \theta) - \cos \theta \\ \cos (90^{\circ} - \theta) = \sin \theta \\ \tan (90^{\circ} - \theta) = \cot \theta\end{array}\right\}$$

$$= (\sin^{2}20^{\circ} + \cos^{2}20^{\circ}) + 2 \cdot \tan 15 \times \frac{1}{\tan 15^{\circ}} \qquad \{\text{using cot } \theta = \frac{1}{\tan \theta}\}$$

$$= 1 + 2 = 3 \quad \{\text{using sin}^{2}\theta + \cos^{2}\theta = 1\}$$

13. Given:  $A(x_1, y_1) = (1, k), B(x_2 y_2) = (4, -3)$  $C(x_3, y_3) = (-9, 7)$ And Area( $\Delta ABC$ )= 15 square units

We know Area of a triangle with coordinates  $(x_1, y_1)$ ,  $(x_2 y_2) (x_3 y_3)$  is

Area = 
$$\frac{1}{2} |\mathbf{x}_1(\mathbf{y}_2 - \mathbf{y}_3) + \mathbf{x}_2(\mathbf{y}_3 - \mathbf{y}_1) + \mathbf{x}_3(\mathbf{y}_1 - \mathbf{y}_2)|$$

|                                                                               | $\Rightarrow$                         | $15 = \frac{1}{2}  1(-3 - 7) + 4(7 - k) - 9 (k + 3) $ |                     |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|---------------------|--|--|--|
|                                                                               |                                       | 30 =  -10 + 28 - 4k - 9k - 27                         |                     |  |  |  |
|                                                                               | or $ -13k - 9  = 30$                  |                                                       |                     |  |  |  |
|                                                                               | $\Rightarrow$ either                  |                                                       |                     |  |  |  |
|                                                                               |                                       | -13k - 9 = 30 or $-(-13k - 9) = 30$                   |                     |  |  |  |
|                                                                               |                                       | -13k = 39                                             | 13k + 9 = 30        |  |  |  |
|                                                                               |                                       | $k = -\frac{39}{13} = 3$                              | 13k = 21            |  |  |  |
|                                                                               |                                       | k = 3                                                 | $k = \frac{21}{13}$ |  |  |  |
|                                                                               | $\Rightarrow$                         | $k = 3 \text{ or } \frac{21}{13}$                     |                     |  |  |  |
| 14.                                                                           | B<br>E<br>C<br>P                      |                                                       |                     |  |  |  |
|                                                                               | Giver                                 | h: DE    AC and $\frac{BE}{EC} = \frac{BC}{CP}$       | (i)                 |  |  |  |
|                                                                               | To pr                                 | oof: DC    AP                                         |                     |  |  |  |
|                                                                               | Proofs: In $\triangle ABC$ , DE    AC |                                                       | (Given)             |  |  |  |
|                                                                               | $\Rightarrow$                         | $\frac{BE}{CE} = \frac{BD}{DA}$                       | (ii)                |  |  |  |
| A line parallel to one side of a triangle divide the other two sides in the s |                                       |                                                       |                     |  |  |  |
|                                                                               | Also                                  | $\frac{BE}{CE} = \frac{BC}{CP} \qquad (Given)$        |                     |  |  |  |
|                                                                               | Sow                                   | BD BC                                                 | (;;;)               |  |  |  |

So we have 
$$\frac{1}{AD} = \frac{1}{CP}$$
  
Now in  $\triangle ABP$ ;  $\frac{BD}{AD} = \frac{BC}{CD}$  (just proved)  
 $\Rightarrow DC \mid \mid AP$ 

(A line dividing two sides of a triangle in the same ratio is parallel to the third side)

... (iii)

15. Total number of cards in the box = 65

- (i) Number of cards of one digit = (6, 7, 8, 9) = 4 Probability of 1 digit number =  $\frac{4}{65}$
- (ii) Total numbers divisible by 5 = (10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 and 70) = 13 Probability of number divisible by 5 =  $\frac{13}{65} = \frac{1}{5}$

16.  $72 = 2^3 \times 3^2$ 

 $126 = 2 \times 3^{2} \times 7$   $168 = 2^{3} \times 3 \times 7$   $HCF = 2 \times 3 = 6$   $LCM = 2^{3} \times 3^{2} \times 7 = 504$   $HCF \times LCM = 2 \times 3 \times 2^{3} \times 3^{2} \times 7 = 2^{4} \times 3^{3} \times 7$   $Product of numbers = 2^{3} \times 3^{2} \times 2 \times 3^{2} \times 7 \times 2^{3} \times 7 = 2^{7} \times 3^{5} \times 7^{2}$   $\therefore HCF \times LCM \neq Product of numbers.$ 

17. 2x - y = 2

4x - y = 8

The point of intersection is (3, 4).



### 0R

For real and distinct roots, D > 0

$$\therefore \quad 4(1 + 2m)^2 - 8m(3 + 2m) > 0$$
  

$$4 + 16m^2 + 16m - 24m - 16m^2 > 0$$
  

$$4 - 8m > 0$$
  

$$\implies \quad m < \frac{1}{2}$$

For equal roots, D = 0

$$\Rightarrow$$
 m =  $\frac{1}{2}$ 

19. L.H.S. = 
$$\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta - 1}$$
  
=  $\frac{\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\sin \theta} + \frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\sin \theta} - \frac{1}{\sin \theta}}$   
=  $\frac{\cot \theta - 1 + \csc \theta}{\cot \theta + 1 - \csc \theta}$   
=  $\frac{\cot \theta - (\csc e^2 \theta - \cot^2 \theta) + \csc e \theta}{\cot \theta + 1 - \csc \theta}$   
=  $\frac{\cot \theta - (\csc e^2 \theta - \cot^2 \theta) + \csc e \theta}{\cot \theta + 1 - \csc \theta}$   
=  $\frac{\cot \theta + \csc e - (\csc e \theta - \cot \theta) (\csc e \theta + \cot \theta)}{\cot \theta + 1 - \csc \theta}$   
=  $\frac{(\cot \theta + \csc e \theta) [1 - \csc e \theta + \cot \theta]}{[1 - \csc \theta + \cot \theta]}$ 

```
= \cot \theta + \csc \theta
```

= R.H.S.

```
0R
```

R.H.S. = 
$$\frac{1}{\tan \theta + \cot \theta}$$
  
=  $\frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}}$   
=  $\frac{1}{\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}}$ 

Also, R.H.S. = (cosec  $\theta$  – sin  $\theta$ ) (sec  $\theta$  – cos  $\theta$ )

$$= \left(\frac{1}{\sin \theta} - \sin \theta\right) \left(\frac{1}{\cos \theta} - \cos \theta\right)$$
$$= \frac{(1 - \sin^2 \theta)}{\sin \theta} \frac{(1 - \cos^2 \theta)}{\cos \theta}$$
$$= \frac{\cos^2 \theta \sin^2 \theta}{\sin \theta \cos \theta}$$
$$= \cos \theta \sin \theta$$
Hence, R.H.S. = L.H.S.

- 20. The required A.P. is 10, 13, 16, .........,97 It is an A.P with a = 10, d = 3 and n = 30  $\therefore$  S =  $\frac{n}{2}$  [2a + (n - 1)d] =  $\frac{30}{2}$  [2 × 10 + 29 × 3] = 1605
- 21. P is the mid-point of the line segment joining (2, -1) and (5, -6)
  - $\therefore \text{ Co-ordinates of P are } \left(\frac{7}{2}, \frac{-7}{2}\right)$ P lies on 2x + 3y + k = 0  $\therefore 2 \times \frac{7}{2} + 4\left(-\frac{7}{2}\right) + k = 0$ 7 - 14 + k = 0  $\Rightarrow k = 7$

# Top Careers & You®

22. Given: A triangle ABC with AD as median Construction : Draw AM perpendicular to BC. А In  $\triangle ABM$ ,  $AB^2 = AM^2 + BM^2$  $=(AD^{2} - DM^{2}) + (BD + DM)^{2}$  $AB^2 = AD^2 + BD^2 + 2BD.DM$ .... (i) In ΔAMC,  $AC^2 = AM^2 + MC^2$ B  $AC^{2} = (AD^{2} - DM)^{2} + (CD - DM)^{2}$ D Μ С  $AC^2 = AD^2 + CD^2 - 2CD.DM$ ... (ii) Adding (i) and(ii)  $AB^{2} + AC^{2} = AD^{2} + BD^{2} + 2BD.DM + AD^{2} + CD^{2} - 2CD.DM$ Since, BD = CD  $AB^{2} + AC^{2} = 2(AD^{2} + BD^{2})$  $\Rightarrow$ 

### 0R

Given: A triangle ABC with an acute angle  $\angle A$  and lines BD and CE perpendicular on lines AC and AB respectively.

To prove: 
$$AB \times AE = AC \times AD$$
  
In  $\triangle ABD$  and  $\triangle ACE$   
 $\angle A = \angle A$   
 $\angle ADB = \angle AEC = 90^{\circ}$  [given]  
Hence,  $\triangle ABD \sim \triangle ACE$   
So  $\frac{AC}{AB} = \frac{AE}{AD}$   
 $AC \times AD = AE \times AB$   
Hence proved



23. Let A(5, 6), B(1, 5), C(2, 1) and D(6, 2) be the vertices of the square. To show that it is a square we should use the property that all its sides should be equal and both its diagonals should also be equal. Now,

AB = 
$$\sqrt{(5-1)^2 + (6-5)^2} = \sqrt{(4)^2 + (1)^2} = \sqrt{17}$$
  
BC =  $\sqrt{(1-2)^2 + (5-1)^2} = \sqrt{1+16} = \sqrt{17}$   
CD =  $\sqrt{(2-6)^2 + (1-2)^2} = \sqrt{16+1} = \sqrt{17}$   
DA =  $\sqrt{(6-5)^2 + (2-6)^2} = \sqrt{1+16} = \sqrt{17}$ 

AC = 
$$\sqrt{(5-2)^2 + (6-1)^2} = \sqrt{9+25} = \sqrt{34}$$
  
BD =  $\sqrt{(1-6)^2 - (5-2)^2} = \sqrt{25+9} = \sqrt{34}$ 

Since, AB = BC = CD = DA and AC = BD, all the form sides of the quadrilateral ABCD are equal and its diagonals AC and BD are also equal. Therefore ABCD is a square.

24.



PA and PB are the required tangents.

25. Radius of circle is OA = R = 14 cm. Radius of circle with diameter OD = r = 7 cm So area of this circle is  $\pi r^2$ .

$$=\frac{22}{7} \times 7 \times 7 = 154 \text{ cm}^2.$$

Area of the semicircle =  $\frac{1}{2}(\pi R^2)$ 

$$=\frac{1}{2} \times \frac{22}{7} \times 14 \times 14 = 308 \text{ cm}^2$$

Area of the shaded portion = (area of circle with radius r) + (area of semicircle with radius R) – (area of the triangle)

$$= 154 + 308 - \frac{1}{2} \times 28 \times 14$$
$$= 154 + 308 - 196 = 266 \text{ cm}^2$$

26. Let the number of persons be = n

If Rs. 6500 is divided equals than each willg et = Rs.  $\frac{6500}{n}$ 

If number of person are increased by 15 i.e. n + 15 than each person will get Rs. 30 less.

So according to question.

$$\frac{6500}{n+15} = \frac{6500}{n} - 30$$

$$30 = \frac{6500}{n} - \frac{6500}{n+15}$$

$$30 = 6500 \left(\frac{1}{n} - \frac{1}{n+15}\right)$$

$$\therefore \quad 30 = 6500 \left(\frac{15}{(n)(n+15)}\right)$$

$$(n) (n+15) = \frac{6500 \times 15}{30}$$

$$n^{2} + 15n - 32 \sqrt{0} = 0$$

$$n^{2} + 65n - 50n - 3250 = 0$$

$$n(n+65) - 50(n+65) = 0$$

$$n = 50, -65$$
So number of person are 50.

### 0R

Let the speed of train b = v km/h

So time taken by train to cover 360 km =  $\frac{360}{v}$  hours

Now if the speed is increased by 5 km/h i.e. v + 5 km/h then time reduces by one hour.

So according to question

$$\frac{360}{v} - 1 = \frac{360}{v+5}$$

$$\frac{360}{v} - \frac{360}{v+5} = 1$$

$$360 \left(\frac{1}{v} - \frac{1}{v+5}\right) = 1$$

$$\frac{360 \times 5}{(v) (v+5)} = 1$$

$$\Rightarrow \quad (v) (v+5) = 1800$$

$$v^{2} + 5v - 1800 = 0$$

$$v^{2} + 45v - 40v - 1800 = 0$$

$$v(v+45) - 40(v+45) = 0$$

$$(v-40) (v+45) = 0$$

$$v = 40, -45$$

So original speed of train is 40 km/h

27. Let GH be the upper surface of the lake, C be the position of the cloud,D be its reflection in the lake and E be the eye of the observer.

Draw EF  $\perp$  CD and EG  $\perp$  GH. Then,

GE = 60,  $\angle$ FEC = 30° and  $\angle$ FED = 60°.

Clearly, FH = GE = h. Let height of the cloud = HC = HD = x.

$$\therefore FC = x - 60 \text{ and } FD = x + 60.$$
Now,  $\frac{EF}{FD} = \cot 60^{\circ}$ 

$$\Rightarrow EF = (x + 60) \cot 60 = (x + 60) \frac{1}{\sqrt{3}}$$
Also  $\frac{EF}{FC} = \cot 30^{\circ}$ 

$$\Rightarrow EF = (x - 60) \sqrt{3}$$

$$\therefore EF = (x - 60) \sqrt{3} = (x + 60) \frac{1}{\sqrt{3}}$$
 $3(x - 60) = (x + 60)$ 
 $3x - 180 = x + 60$ 
 $2x = 240$ 
 $x = 120$ 
Height of the cloud = 120 m



The length of two tangents drawn from an external point to a circle are equal.
 Given: Two tangents AP and AQ drawn from a point A to a circle C(O, r).

To prove: AP = AQ.

Construction: Join OP, OQ, and OA.

**Proof:** Since a tangent at any point of a circle is perpendicular

to the radius through the point of contact, we have  $\mathsf{OP} \perp \mathsf{AP}$ 

and OQ  $\perp$  AQ.

Now, in right triangles OPA and OQA, we have

OP = OQ (radii)

and OA = OA (common)

 $\therefore \Delta OPA \cong \Delta OQA$ 

Hence, AP = AQ.



| Part II                                                                         |                                  |      |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|----------------------------------|------|--|--|--|--|--|--|
| Ιη ΔΑΡQ                                                                         |                                  |      |  |  |  |  |  |  |
| AP = AQ                                                                         | (Proved)                         |      |  |  |  |  |  |  |
| $\therefore$ $\angle 1 = \angle 2$                                              | (Angles opposite to equal sides) |      |  |  |  |  |  |  |
| $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$                                  | (Sum of angles of $\Delta$ 's)   | (i)  |  |  |  |  |  |  |
| ∴ ∠4 = ∠5                                                                       | (Angles opposite to radii)       |      |  |  |  |  |  |  |
| $\angle 4 + \angle 5 + \angle 6 = 180^{\circ}$                                  |                                  | (ii) |  |  |  |  |  |  |
| Adding (i) and (ii)                                                             |                                  |      |  |  |  |  |  |  |
| $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360^{\circ}$ |                                  |      |  |  |  |  |  |  |
| $\angle 1 + 2\angle 4 + \angle 3 + \angle 6 = 360^{\circ}$                      |                                  |      |  |  |  |  |  |  |
| $2(\angle 1 + \angle 4) + \angle 3 + \angle 6 = 360^{\circ}$                    |                                  |      |  |  |  |  |  |  |
| $2 \times 90^\circ + \angle 3 + \angle 6 = 360^\circ$                           | $(as OQ \perp AQ)$               |      |  |  |  |  |  |  |
| $\angle 3 + \angle 6 = 360^{\circ} - 180^{\circ} = 180^{\circ}$                 |                                  |      |  |  |  |  |  |  |
| $\angle 3$ and $\angle 6$ are supplementary                                     |                                  |      |  |  |  |  |  |  |
|                                                                                 | <b>A B</b>                       |      |  |  |  |  |  |  |

0R

The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.

Given:  $\triangle ABC$  and  $\triangle DEF$  are two similar triangles.

To prove:

(i) 
$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$$

**Construction:** Draw AG  $\perp$  BC and DH  $\perp$  EF.

Proof: (i) 
$$\frac{\operatorname{ar} (\Delta ABC)}{\operatorname{ar} (\Delta DEF)} = \frac{\frac{1}{2} \times BC \times AG}{\frac{1}{2} \times EF \times DH} = \frac{BC}{EF} \times \frac{AG}{DH} \dots (i)$$
  
(: area of  $\Delta = \frac{1}{2}$  base × height)

Now, in  $\Delta$  s ABG and DEH, we have

 $\angle B = \angle E \qquad (\because \Delta ABC \sim \Delta DEF)$   $\angle AGB = \angle DHE \qquad (each equal to 90^{\circ})$   $\therefore \Delta ABG \sim \Delta DEH \qquad (AA Similarity)$   $\therefore \frac{AB}{DE} = \frac{AG}{DH}$ 



(: If  $\Delta s$  are similar, the ratio of their corresponding sides is same)

.... (1)

But 
$$\frac{AB}{DE} = \frac{BC}{EF}$$
 (::  $\triangle ABC \sim \triangle DEF$ )  
 $\Rightarrow \frac{AG}{DH} = \frac{BC}{EF}$  ...(ii)

Now, from (i) and (ii), we have:  $\frac{\text{ar }(\Delta ABC)}{\text{ar }(\Delta DEF)} = \frac{BC}{EF} \times \frac{BC}{EF} = \frac{BC^2}{EF^2}$ Similarly we can prove  $\frac{\text{ar }(\Delta ABC)}{\text{ar }(\Delta DEF)} = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$ 

If the area of two similar triangle are equal i.e ar( $\Delta ABG$ ) = ar( $\Delta DEH$ )

Using the above relation:

$$\frac{\operatorname{ar} (\Delta ABC)}{\operatorname{ar} (\Delta DEF)} = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$$

$$1 = \frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$$

We get BC = EF, AB = DE and DF = AC

Now, in  $\Delta$  s ABG and DEH, we have BC = EF, AB = DE and DF = AC

$$\therefore \Delta ABG \cong \Delta DEH \qquad (using SSS)$$

Radius of top R = 28 cm 29.

> Radius of bottom r = 7 cm Let height of the bucket = h Capacity of the bucket = $21560 \text{ cm}^3$ As capacity=  $\frac{\pi h}{3} [R^2 + r^2 + Rr]$ 21560 =  $\frac{\pi h}{3} [R^2 + r^2 + Rr] = (22/7) (h/3) (28^2 + 7^2 + 28 x 7)$ 21560 = 1078 h

h= 20

Slant height of Frustum =  $\sqrt{h^2 + (R - r)^2} = \sqrt{20^2 + (28 - 7)^2} = \sqrt{400 + 441} = \sqrt{841} = 29$ Total surface area =  $\pi [\ell (R + r) + r^2] = 3344 \text{ cm}^2$ 



| Classes | Frequency (f <sub>i</sub> ) | Class mark     | $f_i x_i$             | Cumulative |
|---------|-----------------------------|----------------|-----------------------|------------|
|         |                             | $\mathbf{x}_1$ |                       | frequency  |
| 10 - 20 | 4                           | 15             | 60                    | 4          |
| 20 - 30 | 8                           | 25             | 200                   | 12         |
| 30 - 40 | 10                          | 35             | 350                   | 22         |
| 40 - 50 | 12                          | 45             | 540                   | 34         |
| 50 - 60 | 10                          | 55             | 550                   | 44         |
| 60 - 70 | 4                           | 65             | 260                   | 48         |
| 70 - 80 | 2                           | 75             | 150                   | 50         |
|         | $\sum f_i = 50$             |                | $\sum f_i x_i = 2110$ |            |

Mean = 
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{2110}{50} = 42.20$$

Calculation of median

Since n = 50.

So,  $\frac{n}{2} = \frac{50}{2} = 25$  This observation lies in 40 – 50.  $\therefore \ell = 40, f = 12, cf = 22, h = 10$ 

We know, median = 
$$\ell + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h = 40 + \left(\frac{\frac{50}{2} - 22}{12}\right) \times 10 = 40 + 2.5 = 42.5$$

#### Calculation of mode

Here the maximum class frequency is 12 and the class corresponding to this frequency is 40 – 50 So, modal class is 40 – 50

Lower limit ( $\ell$ ) of modal class = 40

Frequency  $(f_1)$  of modal class = 12

Frequency ( $f_0$ ) of class preceding modal class = 10

Frequency  $(f_2)$  of class succeeding modal class = 10

We know, Mode = 
$$\ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 40 + \left[\frac{(12 - 10)}{2 \times 12 - 10 - 10}\right] \times 10 = 40 + \frac{2 \times 10}{4} = 40 + 5 = 45.$$

30